Теорема не требующая доказательств – Как в математике называется теорема не требующая доказательства?

Ответы@Mail.Ru: Что такое аксиома?

высказывание не требующее доказательства

Неоспоримое абсолютно верное утверждение, принятое за истину.

Принимается без доказательств...

Утверждение принимаемое без доказательста

Утверждение, принимаемое без доказательства.

не требуещий доказательства постулат

Аксио́ма (др. -греч. ἀξίωμα — утверждение, положение) или постулат — утверждение (факт) , принимаемое истинным без доказательства, а также как «фундамент» для построения доказательств. Здесь истинность следует понимать только как логическое значение, не как абсолютное знание. Слово «аксиома» , кроме того, имеет значения: перен. то, что не требует никаких доказательств утверждение, отрицание истинности которого, отрицает основы логического мышления

АКСИОМА – принцип или положение, принимаемое без доказательств за истинное.

Аксиома (др. -греч. ξωμα — утверждение, положение) или постулат — утверждение, принимаемое без доказательства. Впервые термин «аксиома» встречается у Аристотеля (384—322 до н. э. ) и перешёл в математику от философов Древней Греции. Евклид различает понятия «постулат» и «аксиома» , не объясняя их различия. Со времен Боэция постулаты переводят как требования (petitio), аксиомы — как общие понятия. Первоначально слово «аксиома» имело значение «истина, очевидная сама по себе» . В разных манускриптах Начал Евклида разбиение утверждений на аксиомы и постулаты различно, не совпадает их порядок. Вероятно переписчики придерживались разных воззрений на различие этих понятий. Аксиоматизация теории — явное указание конечного набора аксиом. Утверждения, вытекающие из аксиом, называются теоремами. Примеры различных, но равносильных наборов аксиом можно встретить в математической логике и евклидовой геометрии. Набор аксиом называется непротиворечивым, если из аксиом набора, пользуясь правилами логики, нельзя прийти к противоречию. Независимость системы аксиом - свойство системы аксиом данной аксиоматической теории, состоящее в том, что каждая аксиома является независимой, то есть не является логическим следствием из множества остальных аксиом этой теории. Система аксиом, обладающая этим свойством, называется независимой. Независимость той или иной аксиомы данной аксиоматической теории означает, что эту аксиому можно без противоречия заменить её отрицанием. Иными словами, аксиома независима в том и только в том случае, если имеется интерпретация, при которой эта аксиома ложна, а все остальные аксиомы данной теории истинны. Построение такой интерпретации является классическим методом доказательства независимости. В аксиомах никогда не включаются логические цепочки, доказательства и построения. аксиомы - чистое описание тех фактов, существование которых имеется основание считать эмпирически доказанными, для чего имеются описание опыта и методика проведения этого опыта, в котором это всегда подтверждается. Поэтому в аксиомах (естественно, в их описаниях) никогда не фигурируют абстракции, не имеющие прямого соответствия с какими-то свойствами мира. Поэтому в аксиомы не включаются понятия, зависящие от условий - границ абстракций, созданных человеком, в отличие от строгих терминов (см. подробнее ниже) . аксиомы не зависят от того, какими границами наделил абстракцию человек, но должны включать в себя область корректности их описаний. Так, законы Ньютона являются абстракциями, область корректного описания действительности которых - нерелятивистские скорости. Для каждый из значений взаимных скоростей существует возможность определить точность (погрешность) описания аксиомы.

ТЕОРЕМА или УТВЕРЖДЕНИЕ, не требующее доказательства.

недоказываемая задача

Словарь иностранных слов АКСИОМА-( гр. axiomal)- исходное положение какой-л. науки, теории, принимаемое без доказательств; неоспоримая истина.

Теорема без доказательства

Аксио́ма (др. -греч. ἀξίωμα — утверждение, положение) или постулат — утверждение (факт) , принимаемое истинным без доказательства, а также как «фундамент» для построения доказательств. Здесь истинность следует понимать только как логическое значение, не как абсолютное знание. Слово «аксиома» , кроме того, имеет значения: перен. то, что не требует никаких доказательств утверждение, отрицание истинности которого, отрицает основы логического мышленияТеорема без доказательства

touch.otvet.mail.ru

Что такое "утверждение, требующее доказательства"

Традиционно принято считать, что основоположниками геометрии как науки являются греки, которые переняли у египтян умения измерять объёмы различных тел и землю. Древние египтяне, установив со временем общие закономерности, составили первые доказательные труды. В них все положения выводились логическими путями из маленького числа недоказываемых предложений или аксиом. Так, если аксиома – высказывание, которое не нуждается в доказывании, то, что такое "утверждение, требующее доказательства"? Прежде чем разобраться в этом, нужно понять, что представляет собой термин «доказательство».

Толкование понятия

Доказательство (обоснование) представляет собой логический процесс установления истинности определённого утверждения с помощью иных утверждений, которые уже доказаны ранее. Так, когда нужно доказать суждение А, то подбирают такие суждения В, С и Д, из которых А следует как логическое следствие.

Доказательства, которые применяются в науке, состоят из различных видов умозаключений, связанных между собой так, что следствие одного является предпосылкой для возникновения другого и так далее.

Доказательство в науке

Развитость любой науки определяется степенью применения в ней доказательств, при помощи которых можно обосновать истинность одних и ложность иных утверждений. Именно доказательства помогают избавиться от заблуждений, открывая простор научному творчеству. А образующаяся с их помощью связь между разными утверждениями определённой науки даёт возможность определить её логическую структуру.

В современное время доказательства широко используются в логике и математике, они представляют собой методы анализа тогда, когда возникает необходимость выявления структуры умозаключений.

Математика

У многих, постигающих такую науку, как математика, возникает вопрос о том, что такое утверждение, требующее доказательства. Ответ ("Аватария" свидетельствует об этом) - это теорема.

Она представляет собой математическое утверждение, правдивость которого уже установлена посредством доказательства. Само по себе понятие «теорема» развивалось наряду с понятием «математическое доказательство». С точки зрения аксиоматического метода, теорема какой-либо теории представляет собой те высказывания, которые выводятся только логическим путём из определённых, ранее фиксированных высказываний, называемых аксиомами. А так как аксиома является истинной, то истинной должна быть и теорема.

Далее утверждение, требующее доказательства (теорема), тесно переплеталось с понятием «логическое следствие». Так, со временем процесс логического умозаключения свёлся к появлению формул или математических утверждений, которые записывались на определённом языке по сформулированным правилам, относящимся не к содержанию предложения, а к его форме. Таким образом, в теории доказательство выступает как последовательность формул, каждая из которых является аксиомой.

В математике теорема, или утверждение, требующее доказательства, представляет собой последнюю формулу в процессе доказывания некоторой теории. Данная формулировка образовалась в результате использования различных математических методов. Также было установлено, что аксиоматические теории, которые входят в состав разных разделов математики, являются неполными. Так, существуют утверждения, правдоподобность или ложность которых нельзя установить логическим путём на основе аксиом. Такие теории неразрешимы, не имеют одного метода решения.

Таким образом, утверждение, требующее доказательства, в математике называется теоремой.

Философия

Философия представляет собой науку, изучающую систему знаний о характеристиках и принципах реальности и познания. Итак, с этой позиции что собой представляет утверждение, требующее доказательства? Ответ: "Аватария" говорит, что это тезис.

Он в этом случае представляет собой философское или богословское положение, утверждение, которое необходимо доказать. В давние времена этот термин обрел особое значение, поскольку тогда появилось понятие «антитезис», которое представлялось в противоречивом высказывании или умозаключении. Тогда Кант обратил внимание на тот факт, что можно высказывать противоречивые утверждения с такой же правдоподобностью. Например, можно доказывать, что мир бесконечен и возник случайно, он состоит из неделимых атомов, в нём существует свобода. Такие утверждения философ отмечал как совокупность тезиса и антитезиса. Такое противоречивое утверждение, требующее доказательства, а также неразрешимость противоречий, объясняются тем, что разум выходит за рамки познавательных способностей человека.

В философии одному и тому же объекту мысли приписывается свойство, которое в то же время отрицается. Таким образом, чтобы эти составляющие существовали в единстве, необходимо наличие трёх элементов: условия, обусловленности (доказательства) и понятия.

На основании всего этого Гегелем был выведен диалектический метод, в основе которого лежит переход от тезиса посредством доказывания к синтезу. Это стало орудием для построения метафизики.

Логика

В логике утверждение, требующее доказательства, также именуется тезисом. В этом случае он выступает как точное суждение, что выдвинул оппонент, которое он должен обосновать в процессе доказывания. Тезис является главным элементом аргументации.

Правила

На протяжении всего процесса аргументации тезис должен оставаться одним и тем же. Если нарушено данное условие, это ведёт к тому, что будет доказываться не то утверждение, которое должно быть опровергнуто. Здесь сработает правило: «Кто много доказывает, тот ничего не доказывает!»

Отметим еще кое-что, рассматривая этот вопрос: утверждение, требующее доказательства не должно быть многозначным. Это правило защищает от двусмысленности положения при его доказывании. Например, очень часто человек говорит так много, как будто что-либо доказывает, но что именно, остаётся неясным, поскольку его тезис неопределённый. Двусмысленность утверждения приводит к безрезультатным спорам, так как каждая из сторон по-разному воспринимает доказываемое положение.

Утверждение, не требующее доказательства

Ещё Аристотель, рассматривая вопрос о доказуемости утверждений, выдвинул теорию силлогизмов. Силлогизмы состоят из таких утверждений, которые содержат слова «может» или «должен» вместо «есть». Такие высказывания логически не обоснованы, потому что их предпосылки не доказаны. Это затрагивает вопрос об отправных точках развития науки. По мнению Аристотеля, любая наука должна начинаться с утверждений, которые не нуждаются в доказательстве. Он назвал их аксиомами.

Аксиома

Утверждение, не требующее доказательства, - это аксиома. Её не нужно доказывать на практике, необходимо только объяснить, чтобы было понятно. Говоря об аксиомах, Аристотель рассматривал геометрию, которая приобретала форму систематизации. Математика являлась первой наукой, где использовались утверждения, которые не нуждались в обосновании. Потом шла астрономия, так как для обоснования движения планет необходимо прибегать к математическим расчётам. Как видно, науки уже тогда выстраивались наподобие иерархии.

Типы наук по Аристотелю

Аристотель по основным целям выдвигал три типа наук. Теоретические науки дают знания в том ракурсе, в котором они противопоставляются мнениям. Математика здесь является самым ярким примером. Сюда же относят физику и метафизику.

Практические науки направлены на то, чтобы научиться управлять поведением человека в обществе. Сюда можно отнести, например, этику.

Технические науки нацелены на создание руководства по сотворению предметов для их применения в жизни или для того, чтобы любоваться их художественной красотой.

Логику Аристотель не относил ни к одной из групп наук. Она выступает в роли общего способа оперировать вещами, который обязателен для каждой из наук. Логика представлена как инструмент, на который будет опираться научное исследование, поскольку она даёт критерии для различения и доказательства.

Аналитика

Аналитика изучает формы доказательства. Она разлагает логическое мышление на простые составляющие, а от них уже переходят к сложным формам мышления. Так, структура доказательства не требует рассмотрения.

Таким образом, логика и аналитика рассматривают вопросы о том, что такое утверждение, не требующее доказательства. То есть для этих отраслей характерно выдвижение аксиом. Также для них свойственно объяснение того, что такое утверждение, требующее доказательства. Ответы на эти вопросы даются в каждой отрасли науки, поскольку ни одно научное исследование не обходится без логики и аналитики.

Соотношение с действительностью

Рассмотрев вопрос о том, что такое утверждение, требующее доказательства, стало очевидным: сущность самого доказательства состоит в том, что высказывание, находящееся в утверждении, соотносится с действительным положением вещей или с иными фактами, подлинность которых уже была доказана ранее. Например, в некоторых случаях истинность утверждений можно обосновать при помощи эксперимента (физического, биологического, химического), по результатам которого становится видным, соответствуют они изложенным суждениям или нет. Иными словами, результаты исследований будут либо доказательством истинности высказывания, либо его опровержением.

А в других случаях, при невозможности проведения эксперимента, человек прибегает к иным обоснованным утверждениям, из которых выводит истинность своего суждения. Такие доказательства сегодня используются в науке, где объекты находятся за границей человеческой возможности наблюдать за ними. Особенно это актуально в математике, где суждения не могут экспериментально провериться. Поэтому утверждение, требующее доказательства, "Аватария" называет теоремой, единственный путь установления истинности которой является доказательством умозаключений на основе ранее доказанных истинных утверждений.

Итоги

Утверждение, которое требует доказательства, должно быть подкреплено аргументами. В качестве них могут выступать суждения, что были ранее доказаны, например, аксиомы, законы, определения, содержащие высказывания о фактах. Аргументы, которые используются при доказывании, находятся между собой в тесной связи и представляют форму доказательства. Они образуют различного рода умозаключения, которые соединяются в цепь.

На примере рассмотрим утверждение, требующее доказательства: «Полученный в ходе эксперимента металл - не натрий». Для доказательства этого высказывания используются следующие аргументы:

1. Все щелочные металлы при комнатной температуре разлагают воду.

2. Натрий является щелочным металлом. Следовательно, он разлагает воду.

3. Образовавшийся в ходе эксперимента металл воду не разлагает. Следовательно, полученный металл - не натрий.

Как видно, все используемые аргументы являются истинными, доказанность которых происходила в результате наблюдения, обобщения прошлого опыта, силлогистического умозаключения. Процесс доказательства здесь основан на двух умозаключениях, следствие одного при этом является предпосылкой другого.

fb.ru

Теорема и Аксиома Лемма, Следствия - введение в математику. основы

Теоре́ма (др.-греч. θεώρημα — «доказательство, вид; взгляд; представление, положение») — утверждение, для которого в рассматриваемой теории существует доказательство (иначе говоря, вывод). В отличие от теорем, аксиомами называются утверждения, которые в рамках конкретной теории принимаются истинными без всяких доказательств или обоснований.

В математических текстах теоремами обычно называют только те доказанные утверждения, которые находят широкое применение в решении математических задач. При этом требуемые доказательства обычно кем-либо найдены (исключение составляют в основном работы по логике, в которых изучается само понятие доказательства, а потому в некоторых случаях теоремами называют даже неопределённые утверждения). Менее важные утверждения-теоремы обычно называют леммами,предложениями, следствиями, условиями и прочими подобными терминами. Утверждения, о которых неизвестно, являются ли они теоремами, обычно называютгипотезами.

Наиболее знаменитыми являются теоремы Ферма, Пифагора и Птолемея.

 

Лемма (греч. λημμα — предположение) — доказанное утверждение, полезное не само по себе, а для доказательства других утверждений. Примеры известных лемм —лемма Евклида, лемма Жордана, лемма Гаусса, лемма Накаямы, лемма Гриндлингера, Лемма Лоренца, Лемма Лебедева.

 

Аксио́ма (др.-греч. ἀξίωμα — утверждение, положение), постула́т — исходное положение какой-либо теории, принимаемое в рамках данной теории истинным без требования доказательства и используемое в основе доказательства других ее положений.[1]

Необходимость в принятии аксиом без доказательств следует из индуктивного соображения: любое доказательство вынуждено опираться на какие-либо утверждения, и если для каждого из них требовать своих доказательств, цепочка получится бесконечной. Чтобы не уходить в бесконечность, нужно где-то эту цепочку разорвать — то есть какие-то утверждения принять без доказательств, как исходные. Именно такие, принятые в качестве исходных, утверждения и называются аксиомами.[2]

В современной науке аксиомы — это те положения теории, которые принимаются за исходные, причём вопрос об истинности решается либо в рамках других научных теорий, либо посредством интерпретации данной теории.[3]

Аксиоматиза́ция теории — явное указание конечного или счётного, рекурсивно перечислимого (как, например, в аксиоматике Пеано) набора аксиом и правил вывода. После того как даны названия изучаемым объектам и их основным отношениям, а также аксиомы, которым эти отношения должны подчиняться, всё дальнейшее изложение должно основываться исключительно лишь на этих аксиомах, не опираясь на обычное конкретное значение этих объектов и их отношений. Утверждения на основе аксиом называются теоремами.

Примеры различных, но равносильных наборов аксиом можно встретить в математической логике и Евклидовой геометрии.

Набор аксиом называется непротиворечивым, если из аксиом набора, пользуясь правилами логики, нельзя прийти к противоречию, то есть доказать одновременно и некое утверждение, и его отрицание. Аксиомы являются своего рода «точками отсчёта» для построения теорий в любой науке, при этом сами они не доказываются, а выводятся непосредственно из эмпирического наблюдения (опыта) или обосновываются в более глубокой теории.

Австрийский математик Курт Гёдель доказал «теоремы о неполноте», согласно которым всякая система математических аксиом (формальная система) начиная с определённого уровня сложности либо внутренне противоречива, либо неполна (то есть в достаточно сложных системах найдётся хотя бы одно высказывание, истинность и ложность которого не может быть доказана средствами самой этой системы).[4]

Примеры аксиом
  • Аксиома выбора
  • Аксиома параллельности Евклида
  • Аксиома Архимеда
  • Аксиома объёмности
  • Аксиома регулярности
  • Аксиома полной индукции
  • Аксиома Колмогорова
  • Аксиома булеана
  • Аксиоматика
    • Аксиоматика теории множеств
    • Аксиоматика вещественных чисел
    • Аксиоматика Евклида
    • Аксиоматика Гильберта

История

Впервые термин «аксиома» встречается у Аристотеля (384—322 до н. э.) и перешёл в математику от философов Древней Греции. Евклид различает понятия «постулат» и «аксиома», не объясняя их различия. Со времён Боэция постулаты переводят как требования (petitio), аксиомы — как общие понятия. Первоначально слово «аксиома» имело значение «истина, очевидная сама по себе». В разных манускриптах Начал Евклида разбиение утверждений на аксиомы и постулаты различно, не совпадает их порядок. Вероятно переписчики придерживались разных воззрений на различие этих понятий.

Отношение к аксиомам как к неким неизменным самоочевидным истинам сохранялось долгое время. Например, в словаре Даля аксиома — это «очевидность, ясная по себе и бесспорная истина, не требующая доказательств».

Сейчас аксиомы обосновываются не сами по себе, а в качестве необходимых базовых элементов теории. Критерии формирования набора аксиом в рамках конкретной теории часто являются прагматическими: краткость формулировки, удобство манипулирования, минимизация числа исходных понятий и т. п. Такой подход не гарантирует истинность принятых аксиом. Лишь подтверждение теории является одновременно и подтверждением набора её аксиом.[1]

См. также

 

В Викицитатнике есть страница по теме
Аксиома
  • Догма
  • Концепция
  • Логика
  • Гипотеза
  • Формализм (математика)
  • Теоремы Гёделя о неполноте
  • Система отсчёта
  • Факт
  • Теорема
  • Теория множеств
  • Теория категорий

intellect.ml

Leave a Reply

Ваш адрес email не будет опубликован. Обязательные поля помечены *